Thermodynamics of stable nanocrystalline alloys: A Monte Carlo analysis

نویسندگان

  • Christopher A. Schuh
  • Tongjai Chookajorn
چکیده

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. A Monte Carlo simulation method is used to study the energetics and configuration of binary alloys when grain boundary states are included as potential equilibrium features. For certain sets of alloy properties, a nanostructured grain assembly is found to be the most energetically favorable state, and is stabilized by grain boundary segregation of solute. The conditions for stability against grain coarsening and the " grain boundary energy " requirement are clarified, with emphasis on the closed system conditions that prevail in nanostructured alloys. Two thermodynamic parameters, the grain boundary area potential and the grain boundary formation energy, are quantitatively disentangled and shown to differently reflect grain stability and the energy state of interfaces. These discussions provide insights on how alloying can be used to actively manipulate nanocrystalline grain sizes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corrigendum: Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation

Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrys...

متن کامل

Importance of frequency-dependent grain boundary scattering in nanocrystalline silicon and silicon-germanium thermoelectrics

Nanocrystalline silicon and silicon-germanium alloys are promising thermoelectric materials that have achieved substantially improved figure of merits compared to their bulk counterparts. This enhancement is typically attributed to a reduction in lattice thermal conductivity by phonon scattering at grain boundaries. However, further improvements are difficult to achieve because grain boundary s...

متن کامل

Design of stable nanocrystalline alloys.

Nanostructured metals are generally unstable; their grains grow rapidly even at low temperatures, rendering them difficult to process and often unsuitable for usage. Alloying has been found to improve stability, but only in a few empirically discovered systems. We have developed a theoretical framework with which stable nanostructured alloys can be designed. A nanostructure stability map based ...

متن کامل

Plasticity of nanocrystalline alloys with chemical order: on the strength and ductility of nanocrystalline Ni–Fe

Plastic deformation and alloying of nanocrystalline Ni-Fe is studied by means of atomic scale computer simulations. By using a combination of Monte-Carlo and molecular dynamics methods we find that solutes have an ordering tendency even if grain sizes are in the nanometer regime, where the phase field of the ordered state is widened as compared to larger grain sizes. Tensile testing of disorder...

متن کامل

Ordered magnesium-lithium alloys: First-principles predictions

Magnesium-lithium Mg-Li alloys are among the lightest structural materials. Although considerable work has been done on the Mg-Li system, little is known regarding potential ordered phases. A first and rapid analysis of the system with the high-throughput method reveals an unexpected wealth of potentially stable low-temperature phases. Subsequent cluster expansions constructed for bcc and hcp s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014